Calcium-Dependent Synaptic Vesicle Trafficking Underlies Indefatigable Release at the Hair Cell Afferent Fiber Synapse

نویسندگان

  • Michael E. Schnee
  • Joseph Santos-Sacchi
  • Manuel Castellano-Muñoz
  • Jee-Hyun Kong
  • Anthony J. Ricci
چکیده

Sensory hair cell ribbon synapses respond to graded stimulation in a linear, indefatigable manner, requiring that vesicle trafficking to synapses be rapid and nonrate-limiting. Real-time monitoring of vesicle fusion identified two release components. The first was saturable with both release rate and magnitude varying linearly with Ca(2+), however the magnitude was too small to account for sustained afferent firing rates. A second superlinear release component required recruitment, in a Ca(2+)-dependent manner, of vesicles not in the immediate vicinity of the synapse. The superlinear component had a constant rate with its onset varying with Ca(2+) load. High-speed Ca(2+) imaging revealed a nonlinear increase in internal Ca(2+) correlating with the superlinear capacitance change, implicating release of stored Ca(2+) in driving vesicle recruitment. These data, supported by a mass action model, suggest sustained release at hair cell afferent fiber synapse is dictated by Ca(2+)-dependent vesicle recruitment from a reserve pool.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response Properties from Turtle Auditory Hair Cell Afferent Fibers Suggest Spike Abbreviated Title: Synchronous Release at Auditory Hair Cell-afferent Fiber Synapse Running Head: Turtle Auditory Hair Cell Afferent Fiber Response Properties

Inner ear hair cell afferent fiber synapses are capable of transferring 20 information at high rates, for long periods of time with extraordinary fidelity. As at other 21 sensory synapses, hair cells rely on graded receptor potentials and unique vesicle 22 trafficking and release properties of ribbon synapses to relay intensity information. 23 Postsynaptic recordings from afferent fibers of the...

متن کامل

Synaptic ribbon enables temporal precision of hair cell afferent synapse by increasing the number of readily releasable vesicles: a modeling study.

Synaptic ribbons are classically associated with mediating indefatigable neurotransmitter release by sensory neurons that encode persistent stimuli. Yet when hair cells lack anchored ribbons, the temporal precision of vesicle fusion and auditory nerve discharges are degraded. A rarified statistical model predicted increasing precision of first-exocytosis latency with the number of readily relea...

متن کامل

Synaptic activity of auditory and vestibular hair cells

·--------------------------------------------------------------------------------------------------------············xiv CHAPTER 1: The inner ear and hair cell resonant frequency Introduction: Sensory organs of the inner ear and innervation ..... ------------------------------·--------·1 Hair cell shape and innervation of the cochlea and sacculus ......................... 2 Frequency detection ...

متن کامل

Synaptic Ribbon Enables Temporal Precision of Hair Cell Afferent Synapse by Increasing the Number of Readily Releasable Vesicles: a Modeling Study Authors

Synaptic ribbons are classically associated with mediating indefatigable neurotransmitter release by sensory neurons that encode persistent stimuli. Yet when hair cells lack anchored ribbons, the temporal precision of vesicle fusion and auditory nerve discharges are degraded. A rarified statistical model predicted increasing precision of firstexocytosis latency with the number of readily releas...

متن کامل

Transmitter release from cochlear hair cells is phase locked to cyclic stimuli of different intensities and frequencies.

The auditory system processes time and intensity through separate brainstem pathways to derive spatial location as well as other salient features of sound. The independent coding of time and intensity begins in the cochlea, where afferent neurons can fire action potentials at constant phase throughout a wide range of stimulus intensities. We have investigated time and intensity coding by simult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2011